We are pleased to share with you all an interesting article contributed by Nikhil Vyakaranam and Dilip Krishna S.
Nikhil Vyakaranam Technical Marketing Engineer at Cisco Systems
|
|
Dilip Krishna S Technical Marketing Engineer at Cisco Systems
|
|
5G is just around the corner!! And it promises to bring with it a host of exciting services and capabilities. We have a lot to write about the new 5G technology. But before that, let’s take a quick look at how the mobile communications has evolved over the past few decades.
Interval between each technology platform is roughly around 10 years. However, there is continuous innovation within each platform which leads us to the next one. For e.g. many of the 5G features like support for massive IoT were already realized in 4G.
Service providers started adopting 3G in early 2000. WCDMA and CDMA2000 were the initial technologies driving 3G. 3G provided marked improvements in voice and data capacities. WCDMA later evolved to HSPA to match up to the speed offered by CDMA2000. 3gpp Release 4 brought in a major change when we moved away from E1/T1 lines and carried traffic inside IP packets. This enabled what can be called as the first version of control/user plane separation where the CS core was split into MSS (MSC server) which served as the control plane and MGW (Media Gateway) which served as the user plane.
completely did away with circuit switch technologies. It uses the OFDMA to increase spectral efficiency. New 4G components like MIMO and Carrier Aggregation have further improved the overall network capacity. With a quantum increase in bandwidth and reduction in latency, 4G could provide many additional services like the Voice over LTE (VoLTE) and Voice of Wifi (VoWiFi).
5G architecture is designed to be “cloud-native’ and there is a push for SDN and Virtualization technologies to create an operationally agile and programmable network. It attempts to minimize the dependencies between access and core networks and the hardware and software components of the network functions. Control plane user plane separation (CUPS) provides the much needed architecture enhancements to separate the user’s signalling and data traffic.
5G also introduced the Network Slicing feature. With network slicing, a physical network infrastructure can be partitioned into multiple virtual networks, allowing the operator to provide a specific kind of support to a specific customer segment. For e.g. a vehicle to vehicle communication requires high mobility but low bandwidth while a mobile broadband to a fixed location requires high bandwidth but low mobility. Network slicing can help operators allocate different resources for different requirements. Another important aspect is “Multi-Connectivity” which enables different access types including 5G, LTE, Wifi and even fixed access to be served by the same network from radio to the core. Network Slicing and Multi-Connectivity ensures 5G becomes the single network infrastructure that can meet diversified service requirements.
There are many things to discuss in 5G and we’ll be discussing that in great detail in the coming weeks. Keep watching this space!!! |
|||||||||||||||||