We are pleased to share with you all an interesting article contributed by Dean Bubley who is mobile & telecom sector analyst, expert consultant & conference speaker.
Dean Bubley Founder and Director at Disruptive Analysis
|
|
I've recently focused on the critical enablers of wireless evolution, as we go towards 5G, IoT, gigabit WiFi and other technologies, especially in the enterprise.
As well as spectrum - which I've covered extensively in recent months - deploying in-building coverage is going to be another issue. This often gets overlooked by mobile strategists and policy-makers, despite its importance.
It is not a new assertion that indoor networks are important for enterprise. The frustrations of poor indoor cellular coverage are universal, while businesses of all types need to provide employees and guests with high-quality Wi-Fi.
Yet there is a risk that future in-building wireless gets worse, not better. Three sets of challenges lie ahead:
(If you don't want to read the full post, I'll be presenting on a client webinar on October 5th - details here. I'll also cover trends in home Wi-Fi in a later post, while I've already written about industrial facilities in a number of previous ones, such as here, as the issues are as much about spectrum as about infrastructure and planning.)
Various solutions abound for providing good signal indoors – distributed antenna systems (DAS), small cells, or even just deployment of lower-frequency bands in outdoor networks, with better penetration through walls. Yet costs remain considerable, especially as usage increases near-exponentially. Upgrading or retro-fitting existing installations often requires hard economic decisions, given that most such investments are not directly “monetised”. Suitable expertise, foresight, planning tools and ongoing monitoring/reporting are important.
The future, however, will accelerate the role of in-building/on-site wireless connectivity – in both predictable and unpredictable fashion. If we consider what a building might look like in the year 2030, say – and how it may be used and occupied – we can start to see the challenges and opportunities.
As well as today’s well-known and well-described uses of wireless (smartphones and laptops on Wi-Fi and cellular networks), we can expect to see a huge number of new uses emerge. This means that today’s implementations will require future-proofing, to support the unknowns of tomorrow. For example, consider the implications of:
All of these trends imply very different traffic patterns. It is not realistic just to extrapolate from current usage – robots may go to places in buildings where humans do not, for example. Mobility requirements may evolve – and so will regulations.
It is not just new classes of device and application which will need to be supported by well-designed coverage infrastructure, but also new classes of service provider that need to access them.
One of the unknowns is about the convergence (or divergence) of different network types. On one hand, cellular networks are embracing Wi-Fi for offload, or for multi-network aggregation, especially as they worry that returning flat-rate data plans may stress their networks. On the other, some networks are looking at running 4G/5G in unlicensed spectrum instead of (or in addition to) Wi-Fi. Yet more service providers are adopting a “Wi-Fi first” approach, reverting to MVNO models for cellular where needed. Future permutations will likely be more complex still. All will (ideally) need to be well-suppported by indoor wireless infrastructure.
For property developers and owners, the quality of indoor networks is increasingly key in determining valuations and rental occupancy. Already seen in hotels, and office new builds, it will be important for today’s new constructions and refurbishments to support adequate flexibility and headroom for the next decade or more.
This takes on further emphasis if you consider the trend towards “buildings-as-a-service”, exemplified by organisations such as WeWork. These new classes of facility often incorporate wireless connectivity both as a billable service element, but also to enable their owners to manage the properties effectively, in terms of energy-efficiency and security. Other forms of monetisation and data-analytics around wireless location-sensing/tracking are also becoming more important.
Lastly, in-building challenges will be driven by the specific location and industry, which themselves may change in nature over the next decade. New building materials, construction practices and regulations will impact wireless in unpredictable ways – more metallic insulation perhaps, but also perhaps robot or pre-fabricated construction allowing wireless systems to be installed more easily. Individual industry verticals will have their own shifts – what will retail stores look like, and how will customers behave, in the era of home deliveries by drone, but more on-premise “experiences”, perhaps with AR/VR systems? What workplaces of the future look like, in an era of self-driving vehicles? Industrial facilities will become increasingly automated, with the largest uses of wireless connections being machines rather than humans. Hotels and airports will see shifts in data connectivity needs from employees and visitors, as application usage shifts.
Small cells look certain to play a more important role in future, and Wi-Fi is going to remain the most important indoor technology for many users and businesses (ignore the fantasists who think it's at risk from 4G / 5G - see my earlier post here).
There are no easy answers here – even if you construct good scenarios for the future, undoubtedly we will be surprised by events. But some form of upfront discipline in designing and building indoor wireless solutions is ever more critical, given the unknowns. The more future-proofing is possible, the lower the potential risk of being caught out. |
||
70% of mobile voice connection and 80% of mobile data connection takes Indoor. A small cell solution can improve mobile operator value proposition and ensure that problems of poor connectivity can be resolved.