| 리포트 | 기술문서 | 테크-블로그 | 원샷 갤러리 | 링크드인 | 스폰서 컨텐츠 | 네트워크/통신 뉴스 | 인터넷자료실 | 자유게시판    한국 ICT 기업 총람 |

제품 검색

|

통신 방송 통계

 
 
 
섹션 5G 4G LTE C-RAN/Fronthaul Gigabit Internet IPTV/UHD IoT SDN/NFV Wi-Fi Video Streaming KT SK Telecom LG U+ OTT Network Protocol CDN YouTube Data Center
 

2024

5G 특화망

포탈

Private 5G/이음 5G

 포탈홈

  넷매니아즈 5G 특화망 분석글 (136)   5G 특화망 4가지 구축모델   산업계 5G 응용   산업분야별 5G 특화망 활용사례  [5G 특화망 벤더Samsung | HFR | Nokia | more
 

해외

  국가별 사설5G 주파수 [국가별 구축현황] 일본 | 독일 | 미국 | 프랑스 | 영국  [사설5G 사업자] Verizon | AT&T | DT | Telefonica | AWS | Microsoft | NTT동일본 | NTT Com    
 

국내

  5G 특화망 뉴스 | 국내 5G 특화망 구축 현황 | 국내 5G 특화망사업자 현황 (19개사) | 국내 자가구축사례 일람 | 국내 특화망 실증사업사례 일람 | 5G 특화망 정책
 
 

[5G 특화망 구축 사례] 한국식품산업클러스터 | 반월시화산단 삼성서울병원 | 롯데월드 | 한국수력원자력 | 해군본부 | 한국전력공사 | more  [이통사] KT

 
 
스폰서채널 |

 HFR Mobile의 5G 특화망 솔루션 (my5G)  Updated   |   뉴젠스의 5G 특화망 구축 및 운영 서비스  NEW  

  스폰서채널 서비스란?
banner
banner
5G로의 진화: 1. CUPS - 제어 평면과 사용자 평면의 분리
Evolution to 5G: 1. Control and User Plane Separation (CUPS)
August 20, 2019 | By 도미선 @ Netmanias
코멘트 (0)
8

5G 시스템은 5G 무선접속기술 (RAT) 못지않게 코어 (Core) 구조에도 큰 변혁을 가져온다. 이 글에서는 4G에서 5G로의 진화와 그에 따른 영향을 Control and User Plane Separation (CUPS) 구조 관점에서 살펴본다.

 

■ 4G (LTE)

그림 1은 초기 LTE 네트워크의 간단한 구조를 나타낸다. 코어 장비들 (예, MME, SGW, PGW)은 중앙에 집중화되어 있다. SGW와 PGW는 제어 평면 (Control Plane; CP) 기능과 사용자 평면 (User Plane; UP) 기능이 밀접하게 결합된 복잡하고 비싼 customized HW 장비이다. 사용자 트래픽량이  증가하여 UP 용량만 늘릴 필요가 있을 때도 CP 용량을 같이 늘려야 해서 장비 업그레이드에 비용이 많이 든다. Deployment 등 네트워크 관리를 유연하게 하기도 힘들다.

 

그림 1. EPC 구조 (without CUPS)

 

모바일 네트워크에 가상화와 클라우드화가 도입됨에 따라 customized HW 의존성을 줄이고 비용 및 네트워크 관리 측면의 효율성이 증가하게 된다. 하지만 중앙집중화로 사용자 트래픽의 이동성 및 지연 성능이 저하되는 문제는 그대로 남게 된다.  

 

이에 대한 솔루션으로 3GPP는 Release 14에서 EPC에 SDN 개념을 적용하여 SGW와 PGW의 CP와 UP를 분리하는 Control and User Plane Separation (CUPS) 구조를 도입한다 (그림 2와 그림 3). CP와 UP 기능이 밀접하게 결합되어 있던 SGW와 PGW 기능은 CP 기능인 SGW-C, PGW-C (이하 GW-C)와 UP 기능인 SGW-U, PGW-U (이하 GW-U)로 분리되고, GW-C와 GW-U는 Sx 인터페이스로 연결된다 (간략화를 위해 Sx CP만 표시).  

 

그림 2. EPC CUPS 구조 (1)

 

CUPS 구조의 장점을 살펴보면, GW-C는 중앙집중화되면서 GW-U는 중앙 클라우드 외에도 일부를 에지 클라우드로 즉 RAN 가까이로 분산 시킬 수 있어 사용자 트래픽의 지연 (latency)을 줄이고 라우팅을 유연하게 제어할 수 있다. 지연에 민감한 사용자 트래픽은 사용자 가까이 위치한 에지로 라우팅하여 에지에서 서비스 받게 함으로써 Mobile (or Multi-Access) Edge Computing (MEC) 도입을 효율적으로 지원할 수 있다. CP와 UP가 분리되어 있으므로 사용자 트래픽 용량이 큰 서비스에 대해서는 GW-U만 독립적으로 늘릴 수 있고, 시그널링 로드가 큰 서비스에 대해서는 GW-C만 독립적으로 늘릴 수 있다. 또한 GW-U와 GW-C 기능을 독립적으로 진화시킬 수 있다.

 

그림 3에서와 같이 중앙에 있는 GW-C는 여러 GW-U와 연결될 수 있다. UE 세션은 하나의 GW-C에 의해 제어되지만 여러 GW-U를 이용할 수 있다. GW-C는 연결된 GW-U들을 관리하고, UE가 서비스를 이용할 때 어느 GW-U를 이용할 지 선택한다. 트래픽 로드에 따라 GW-U를 동적으로 선택할 수도 있고 서비스 별로 다른 GW-U를 선택할 수도 있다. GW-U 선택 후 GW-C는 Sx 인터페이스를 통해 패킷 forwarding 규칙을 GW-U에 설정하고, GW-U는 설정된 규칙에 따라 패킷을 빠르게 forwarding할 수 있다.    

 

그림 3. EPC CUPS 구조 (2)

 

■ 5G  

5G는 LTE 대비 훨씬 더 i) 넓은 대역폭, ii) 큰 트래픽 용량, iii) 낮은 지연, iv) 많은 디바이스 수를 지원한다. EPC가 5G로 진화하면서 CUPS 구조는 5G 네트워크 구조 설계의 핵심 요소 중 하나로 적용되었고, 5G 코어 (5GC) 외에 5G RAN으로도 그 범위가 확대된다.  

 

그림 4는 5GC CUPS 구조를 간단한 형태로 보여준다. 그림 3의 EPC 기능들이 재구성되어 5GC 네트워크 기능 (NF)들로 맵핑된다. 제어 평면에서는 EPC MME의 인증, 접속 제어, 이동성 제어 기능이 5GC Access and Mobility Management Function (AMF)으로, EPC MME와 GW-C의 세션 관리 기능이 5GC Session Management Function (SMF)로 재구성된다. 사용자 평면에서는 EPC GW-U의 패킷 프로세싱 및 policy enhancement 기능이 5GC User Plane Function (UPF)으로 재구성된다.

 

그림 4. 5GC CUPS 구조: CUPS 기반 EPC 기능의 재구성

 

5G New Radio (NR) 규격이 20 Gbps의 셀 용량을 지원하게 되면서 LTE에서의 C-RAN fronthaul 구조로는 전송용량 및 비용 문제가 대두되었다 (참고: 넷매니아즈 기술 문서 "5G RAN/Fronthaul 구축비용을 어떻게 절감하나?: [답] Function Split과 Open Fronthaul Interface"). 이에 3GPP와 모바일 산업계는 LTE RAN (or eNB)의 Digital Unit (DU) (or Baseband Unit (BBU)) 및 Radio Unit (RU) (or Remote Radio Head (RRH)) 기능을 5G RAN (or gNB)에서 새롭게 분리하기 위한 다양한 옵션을 검토해왔다 (참고: TR 38.801, Section 11, Option 1 - Option 8). 이러한 노력을 기반으로 gNB 기능은 Central Unit (CU), Distributed Unit (DU) 및 Radio Unit (RU) 기능으로 분리된다. CU-DU 간 분리인 상위 계층 분리 (High Layer Split; HLS)와 DU-RU 간 분리인 하위 계층 분리 (Low Layer Split; LLS)를 정의하기 위한 작업이 진행되었고, 3GPP는 Release 15에서 Option 2를 HLS로 정하고 F1 인터페이스로 정의하였다 (참고: TS 38.401, NG-RAN architecture).

 

그림 5는 5G RAN과 5GC의 CUPS 구조를 보여준다. CU는 CUPS 구조가 적용되어 CU-CP와 CU-UP로 분리되고 이들은 E1 인터페이스로 연결된다. 또한 CU는 UPF가 위치한 에지 클라우드로 집중화될 수 있으며, DU와 함께 분산될 수도 있다. 하나의 CU-CP는 여러 CU-UP와 연결될 수 있으며, UE가 서비스를 이용할 때 어느 CU-UP를 이용할지 CU-UP를 선택하고 CU-UP와 DU 간 연결을 설정한다. UPF는 중앙 클라우드 외에 에지 클라우드로 분산되어 사용자 가까이에서 서비스를 제공할 수 있게 되며, 5G에서는 표준에 기반한 MEC 기능이 지원된다. 저지연 서비스의 지연과 eMBB 서비스의 백홀 트래픽을 줄일 수 있고 라우팅이 유연하게 제어된다. 

 

그림 5. 5G CUPS 구조: RAN으로의 확장

 

EPC에 CUPS 구조 (Centralized CP, Distributed UP)가 도입되어 5G-ready Core로 진화하고, 5G로 진화하며 RAN으로까지 확장되었다. gNB와 5GC에 걸쳐 5G 네트워크에 내제된 CUPS 구조는 서비스 특성 별로 독립적인 경로 설정과 네트워크 자원 할당을 가능케 한다. 이는 E2E 네트워크 슬라이싱을 가능하게 하는 기반 기술의 하나로, 5G 네트워크가 다양한 특성의 서비스 (eMBB/URLLC/mIoT 서비스)를 동시에 제공할 수 있게 해주는 토대가 된다.

 

Thank you for visiting Netmanias! Please leave your comment if you have a question or suggestion.
View All (1207)
5G (130) 5G 특화망 (43) AI (16) ALTO (1) AR (2) ARP (6) AT&T (1) Akamai (5) Authentication (5) BT (1) Backhaul (2) Big Data (2) Bridging (5) C-RAN/Fronthaul (19) CDN (20) CIoT (2) CPRI (6) Carrier Aggregation (5) Charging (2) China Mobile (2) Cisco (6) CoMP (3) Comcast (1) DHCP (6) DNS (15) Data Center (15) EDGE (14) EMM (1) EPS Bearer (7) Ethernet (3) FTTH (8) GSLB (5) Gigabit Internet (17) Google (17) Google Global Cache (8) Google TV (1) HLS (5) HTTP (5) HTTP Adaptive Streaming (7) HTTP Progressive Download (2) Handover (5) Huawei (1) IGMP (3) IP (6) IP Allocation (8) IP Routing (20) IPSec (4) IPTV (25) IoST (2) IoT (63) KT (46) Korea (8) Korea ICT Vendor (1) L3 Switch (5) LG U+ (24) LTE (99) LTE-A (10) LTE-A Pro (1) LTE-M (1) LTE-U (3) LoRa (5) MEC (15) MPLS (3) MWC 2013 (1) MWC 2015 (3) MWC 2016 (2) MWC 2017 (1) Mobile IPTV (1) Multi-Screen (1) Multicast (2) NAT (9) NB-IoT (6) NTT Docomo (1) Netflix (5) Network Protocol (49) Network Slicing (3) O-RAN (2) OSPF (3) OTT (20) Operator CDN (1) P2P (3) PS-LTE (3) Pooq (2) Private 5G (54) QoS (5) RCS (1) RRH (1) Request Routing (3) SD-WAN (8) SDN/NFV (42) SK Broadband (1) SK Telecom (38) Samsung (2) Security (8) Self-Driving (3) Shortest Path Tree (2) Small Cell (3) Spectrum Sharing (1) TAU (2) Transparent Caching (9) UHD (7) VLAN (2) VPN (3) VR (3) Video Streaming (22) VoLTE (1) VoWiFi (1) WAN Optimization (1) Wi-Fi (30) WiBro(WiMAX) (2) YouTube (16) eICIC (1) eMBMS (1) ePDG (6) u+ tv G (4) 로컬 5G (3) 이음 5G (24)

 

 

     
         
     

 

     
     

넷매니아즈 회원 가입 하기

2023년 6월 현재 넷매니아즈 회원은 55,000+분입니다.

 

넷매니아즈 회원 가입을 하시면,

► 넷매니아즈 신규 컨텐츠 발행 소식 등의 정보를

   이메일 뉴스레터로 발송해드립니다.

► 넷매니아즈의 모든 컨텐츠를 pdf 파일로 다운로드

   받으실 수 있습니다. 

     
     

 

     
         
     

 

 

비밀번호 확인
코멘트 작성시 등록하신 비밀번호를 입력하여주세요.
비밀번호